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Abstract 

The theory of CSL and DSC has been applied for grain 
boundaries of quasicrystals. Particular features of special 
grain boundaries of quasicrystals are underlined. The 
Frank-Rodrigues representation of rotations is used to 
classify disorientations and to find the degeneracy of 
different values of the coincidence index. 

1. Introduction 

Several intermetallics, in systems such as AI-Mn, 
A1-Cu-Fe, AI-Pd-Mn, show diffraction patterns with 
non-crystallographic point symmetry and Bragg peaks. 
This new type of long-range-ordered but aperiodic 
solids are called quasicrystals. Transmission electron 
microscopy used to investigate the diffraction phenom- 
ena also showed the existence of grain boundaries and 
twins. Thus, fundamental problems arise: what is the 
structure of a coherent interface between aperiodic but 
long-range-ordered structures; do the concepts of CSL 
(coincidence site lattice) and DSC (displacement shift 
complete lattice) have a meaning for quasicrystals and 
what are the particular features of twins in quasicrystals? 
This paper gives some answers to these questions and 
provides useful tools for further studies. We restrict 
ourselves to the case of the icosahedral quasicrystals, 
which are of most experimental interest. 

It was shown (Warrington, 1993) that CSLs and DSCs 
(Ranganathan, 1966; Bollmann, 1970) can be applied to 
the crystallography of grain boundaries of quasicrystals. 

A full understanding of the properties of planar 
and linear defects of icosahedral quasicrystals requires 
knowledge of their six-dimensional (6D) representation 
(Katz & Duneau, 1986). Thus, dislocation lines and 
their Burgers vectors are conveniently represented as 
4D manifolds and 6D lattice vectors, respectively, in a 
6D hypercubic crystal (Socolar, Lubensky & Steinhardt, 
1986; Kl6man, 1988). Similarly, grain boundaries in 
icosahedral quasicrystals can be represented as 5D 
interfaces in the 6D crystal (Radulescu, 1994). The 
matrices that describe the disorientation of the grains 
are 6D rotation matrices, the CSL and DSC are 6D 
lattices (Radulescu, 1994; Warrington & LOck, 1995; 
Radulescu & Warrington, 1995). According to this, and 
responding to requirements of experimental works, we 
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provide the list of the 6 × 6 rotation matrices for all 
coincidence indices S < 50, together with the basis 
vectors of grain-boundary dislocations for 27 < 11. 

The point symmetry of the grains multiplies the 
number of rotations that produce the same disorientation. 
Choosing a single representative in the family of all 
symmetry-related rotations is useful for experimental 
statistics of disorientations. For this purpose, we adopt a 
method proposed by Frank (1988) and we discuss some 
properties of what we call 'rotation tiles', the sets of 
rotations that are repeated by symmetry in rotation space. 

A general introduction to N-dimensional CSL theory 
(Fortes, 1983) makes no mention of the important special 
conditions leading to CSLs in quasicrystals because it 
was written before the discovery of quasicrystals. 

The present paper follows the presentation by the 
authors of arithmetic properties associated with direc- 
tions and coincidences in quasicrystals (Radulescu & 
Wamngton, 1995). Parallel and complementary work 
(Baake & Pleasants, 1995a,b); Pleasants, Baake & Roth, 
1996; Baake, 1996) gives an algebraic solution to the 
derivation of CSL rotations. 

2. Coincidences in quasicrystais 

The icosahedral quasicrystal is a three-dimensional 
structure but it allows a simpler description in six dimen- 
sions. We can geometrically obtain the quasicrystal by a 
'cut and project' procedure, applied to a 6D hypercubic 
crystal (Katz & Duneau, 1986). 

A 3D tiling model of a primitive (P-type) icosahedral 
quasicrystal is similar to the unit-cell description of a 
periodic crystal, with the exception that for the quasi- 
crystal one defines two rhombohedral tiles (an oblate 
and a prolate) with a volume ratio "r, and which recur 
in a quasiperiodic way. The edges of the tiles belong to 

II a star of six vectors e i , i = 1 . . . . .  6, which point from 
the centre to the vertices of an icosahedron, and their 
relative directions are best shown on the stereographic 
projection (Fig. 1). This allows any vertex in the tiling 
to be indexed]- with a set of six integer indices z/, i -- 
1 . . . . .  6, and to consider it as the projection of a vertex 

6 v t There are 384 -- 2 6./120 non-equivalent ways of associating the 
el I with the six vectors; we use the particular choice of Kramer, 
Papadopoulos & Zeidler ( 1991 ). 
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of a 6D hypercubic lattice and any tile edge to be the 
projection of  a unit 6D vector e i. The above indices refer 
to the direct space and, in contradistinction to the case 
of a lattice, they take only some of the possible integer 
values (because the tiling vertices project from a cut in 
the hyperlattice). 

The interface between two rotated 3D tilings will (as 
for crystals) show a good fit if there are coincidences of 
the vertices of the disoriented tilings. These coincidences 
exist for special rotation matrices. As in Radulescu & 
Warrington (1995), we call the set of all coincidences in 
the tiling a coincidence quasilattice (CQL) and the spe- 
cial 3D rotations that produce coincidences quasirational 
rotations (Q-ROT). 

The rotation matrix that produces a CSL for a 3D 
crystal has rational coefficients in a suitably chosen 
basis. There is no such 3D basis for a Q-ROT. In order to 
get a rational coefficients matrix for a Q-ROT, one must 
either extend the notion of rational numbers (Pleasants, 
Baake & Roth, 1996) or lift the action of the rotation 
to 6D (as we are doing subsequently). There is a simple 
way of constructing this 6D rational matrix. All we need 
are six independent coincidences, taken for instance from 
a drawing of the coincidences in the 3D tiling. Using the 
indexing scheme from above, we have six pairs of 6D 
integer vectors, which will define a 6D rational matrix 
R as follows: If R II is the 3D Q-ROT, then 

6 6 
R I I ~ x  0 = Yi je) ,  i =  1 . . . . .  6, 

j = l  '= 

where xq and  Yij are integers. However, since the edges 
of the tiles as seen in a 2D (see Figs. 2a-d) or 3D 
projection can be identified with the projections of the 
basis vectors in 6D, 

R = Y X  - I  

with 

X = [xij]i,j=l .. . . .  6, Y = [Yij]i.j=l ..... 6" (1) 

Fig. 1. Stereographic projection showing five/bid axes el L , i = I . . . . .  6, 
and standard stereographic triangle. 

As for 3D crystals, R can be written as 

R = ( 1 / F ) [ R q ] i , j =  , . . . . .  6 '  

where R/j and F are coprime integers satisfying 

(2) 

6 
E R2 = F2" (3) 
i = l  

Rotation matrices that satisfy (2) and (3) produce a 
6D CSL in the 6D hypercubic lattice. We have therefore 
arrived at a condition for coincidences in a 6D lattice. 
The standard techniques (Grimmer, Bollmann & War- 
rington, 1974) for deriving a basis for the CSL and 
DSC lattices in 3D may be directly adapted for 6D. 
Nevertheless, not all solutions of (2) and (3) will have 
a meaning for icosahedral quasicrystals. Q-ROTs in 3D 
arise only from a restricted set of rotation matrices R, 
which commute with the projector II  onto the physical 
space that carries the quasicrystal (otherwise R will 
destroy the quasicrystal geometry). Thus we have the 
additional condition: 

R I I = I I R ,  (4)  

where 

and 

1(1 + S / 5  I/2) H = ~ (5) 

Ii 
0 1 1 1 1 1 

1 0 1 1 1 1 
1 0 1 1 1 

S-- T 1 0 1 ]- (6) 

1 1 1 0 
1 1 1 1 

Relation (4) implies that R block-diagonalizes into 
two 3D rotations: one is RII which acts in the physical 
space, and the other is R ±, which acts in the orthogonal 
complement of the physical space (this 3D space is 
usually called perpendicular space): 

-- R± . (7) 

The rotation A that performs the block- 
diagonalization is the same for any R: 

li1ol T o o T T 1 0 0 1 
1 0 0 "r 1 I- 

A =  [2( ' r+2)]  '/2 g ~- 0 1 1 0 ' (8) 
1 ~ 0 0 ~ 
0 1 ~ T ]- 

where z = (1 + 5t/2)/2 is the golden ratio. The column 
vectors of the upper and the lower 3 × 6 matrices are 
the 3D vectors e i' and @,  respectively, the physical and 
the perpendicular components of the 6D unit vectors. 
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Also, the physical and perpendicular components of 
an arbitrary hyperlattice vector r are, respectively, 

r I I = I I r  and r L = ( 1 - I I ) r .  (9) 

It follows that the lengths of rll and r -L are given by 

I~-III = [ ( r .  r s  ' /2 + r .  S r ) / ( 2  x Sl/2)] '/2, 

I r l l  = [ ( r .  r5 '/2 - r .  S r ) / ( 2  x 5'/2)] ' / '  
(lO) 

This relationship is particularly useful to find the 
perpendicular component of DSC vectors ({}8). Also, 
the rotations R II and R -L defined above are one to one 
related, their rotation axes being the physical and perpen- 
dicular component, respectively, of the same hyperlattice 
vector d, and their rotation angles satisfy 

1 [Yr(R)  -]- Y r ( R S ) / 5 1 / 2  - -  2] cos(~l I) = 

cos(~ -L) = I[Tr(R) - Tr(IRS)/5 '/2 - 2] 
(11) 

o / 

IIj \ 

1 

\! t!t ! 

\ 

 O oqj ! 

_ _ 

~ 1  - 3  - 1 

,~ 

\; 

(a) (b) 

t~ 

(c) (d) 

Fig. 2. Coincidences in a twofold Wieringa roof obtained by cut and projection (according to Katz & Duneau, 1986). (a) The labelling shows the 
succession of four different heights but does not imply equal height increments. The roof (with heights on) has inflation symmetry (vertices 
cx:cur in existing positions when the pattern is scaled by 7-3). Note the different distributions in cases (b) $4,  (c) $5,  (d) $9.  $ 4  (b) contains 
false coincidences (different heights, same 2D projection) that do not belong to the 3D CQL; we did not mark these with dots. 
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3. The Wieringa roof, its 
advantages and disadvantages 

The lozenge faces of the rhombohedra that compose the 
icosahedral Penrose tiling have all the geometry of a face 
of a regular triacontahedron and are the projections of 2D 
square faces of the 6D hypercube. As first proposed by 
Katz & Duneau (1986), the 3D tiling may be displayed 
by use of a Wiefinga roof (de Bruijn, 1981), which 
consists of a connected set of faces of the rhombohedra 
lying between two planes normal to a chosen axis, no 
hidden faces being present when one looks along this 
axis. These roofs have corrugated appearance and do 
not contain all the tiling vertices within the slice between 
the two planes. Viewed along the normal axis, the roof 
appears as a planar pattern of a number of different 
tiles that match one with another. To each vertex of 
the planar tiling may be ascribed a 'height' of the 
vertex in the roof, which is measured along the normal 
axis. These heights can be easily derived from the 6D 
i n d i c e s  {r i} i= l ..... 6 of the vertices and the 6D indices 
{di}i-I 6 of the axis orthogonal to the roof and are 
proportional to p + q x 5 '/2, where p = Y~-~,-I riSijdj 
and q = ~_,i6_l rid i. A simplified presentation~of these 
heights and a discussion of characteristic scaling proper- 
ties of the patterns can be found in Warrington & Ltick 
(1995). 

The restrictions imposed on the Wieringa roofs are 
rather loose and leave some arbitrariness in the choice 
of the roof inside a given slice. Nevertheless, for rotated 
undisplaced quasicrystals, the roof orthogonal to the 
rotation axis possesses the remarkable property of show- 
ing, when heights are taken into consideration, a value 
of the coincidence ratio that is close to that in 6D. For 
this reason, roofs and heights were the raw data for the 
first determination of coincidence rotations (Warrington, 
1993; Warrington & Ltick, 1995). On the other hand, a 
relative displacement of the quasicrystals may lead to a 
reduction in the number of coincident vertices appearing 
in the roof, which is not representative of the situation 
in 6D. This effect will be discussed more fully in {}8, 
where it will be shown how it may be corrected. 

4. Coincidence ratio and index 

We equate a coincidence index ~' for the 6D CSL to the 
ratio of the volumes of primitive unit cells of the CSL 
and the hyperlattice. We define an effective coincidence 
ratio Z '  as the inverse density of coincident vertices 
for the coincidence quasilattice CQL in the 3D tiling 
(or in general in any quasilattice). ~' is well defined 
and can be derived from the matrix R by the same 
techniques as for 3D matrices. One can show that for 
icosahedral quasicrystals ~' takes positive values of the 
form 5X 2 - - y 2 ,  X, y integers (Radulescu, 1994, 1995) or, 
which is the same thing, of the form p2 + p q _  q2 (Baake 
& Pleasants, 1995a,b). £', depends on both R and the 

relationship between the tiling and the hyperlattice. The 
standard way to obtain a quasiperiodic tiling is to select 
those points of the hyperlattice, included in a band, and 
to project them onto the physical space. The band is 
parallel to the 3D physical space and its intersection .,4 
with the 3D perpendicular space is called the acceptance 
domain. The CQL is the projection onto the physical 
space of points of the 6D CSL included in a band parallel 
to the physical space and whose intersection with the 
perpendicular space is the domain 7) common to A and 
R ± A  (i.e. D = ,,4 n R±,A). As the volumes V(A) of 
A and V(7)) of 7) are generally different, a correction 
factor must be applied (Radulescu, 1994; Radulescu & 
Warrington, 1995) in order to get £',,: 

Z,  = [V(A)/V(D)]Z.  (12) 

V(7)) is maximized and close to V(,A) (X'  being min- 
imized and close to X'), when the symmetry centre of 
A is on the rotation axis of R ±. Any translation of A 
from this position increases S~ (see also {}8). Equation 
(12) and the fact that the acceptance domain A is not 
spherical* implies that k7 is always greater than Z' for 
a non-defective tiling. 

5. The set of coincidence rotations 
or quasirationai rotations (Q-ROT) 

The experimentalist requires a list of disorientations 
(the smallest angle equivalent rotation via the symmetry 
of the grains) for the smallest values of • that are 
experimentally accessible. 

Several approaches may be used. The first one is 
restricted to low values of ~ by a visual investigation 
of the tilings of Wieringa roofs (Warrington, 1993; 
Warrington & Ltick, 1995). Another searching technique 
surpasses the earlier technique in speed and accuracy by 
looking for coincidences in the rank 6 module that con- 
tains the tiling. Although six independent coincidences 
are needed to determine a 6D matrix R, only three non- 
coplanar coincidences suffice since three more may be 
obtained by applying to them the generalized inflation 
matrix S, which commutes with R and with the projector 
FI (Radulescu, 1994). Baake & Pleasants (1995a,b) have 
developed an algebraic technique based on icosians. 
Development of the technique of Warrington & Buffalini 
(1971), which searches for diophantine solutions to the 
columns of the rotation matrices, is inefficient and lacks 
further insight into the problem. 

We use here another route with a geometrical foun- 
dation, which is that any Q-ROT is equivalent either to 
a 180 ° rotation about a quasicrystalline direction (twin 
axis, see Appendix A), or to a product of two such 180 ° 
rotations (which for two axes at ~ apart in a plane P is a 

* For icosahcdral quasicrystalline tilings, .,4 is a regular triaconta- 
hcdron, a polyhedron with 30 rhombic faces. 
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rotation of 2#  about an axis normal to P). An analytical 
formula gives the value of 27 for a 180 ° rotation as 
a function of the 6D indices of the rotation axis (see 
Appendix A). We list in Table 1 all twin axes within the 
unit stereographic triangle that correspond to values of 
.U less than an arbitrarily chosen value (here 50). Values 
of S for products of 180 ° rotations about these axes 
or about those equivalent to them can be computed by 
standard matrix manipulation, and we thus select other 
rotation axes of Q-ROT (not of 180 °) with 27 < 50. We 
put all the axes (the 180 ° rotation axes and the others) in 
Table 2 in order of decreasing density. The numbering 
of the axes in this table has no universal meaning but 
depends on our choice to include all axes used for 27 < 
50 (using higher values of Z' would introduce further 
axes and require a different ordering of those present). 
The convention used for the 6D indexing of the axes is 
given in Appendix A. The values of Z,  together with 
the disorientation rotation matrices, the axes and the 
values of the angles for the set of symmetry-equivalent 
rotations, are given in Table 1. 

5.1. Degeneracy of the values of 27 

There exist several Q-ROTs that produce the same 
coincidence index. The first type of this degeneracy can 
be explained by the symmetry of the quasicrystal. 

Let us call two rotations R~, R 2 equivalent if 

R l = 81R2S2, (13) 

where S~, S: are symmetry rotations of the quasicrystal. 
Two equivalent rotations produce the same disori- 

entation and the same coincidence index. If in the 
above definition S~ = S2 ~, then the two rotations are 
conjugate and have the same angles and axes of the same 
crystallographic form. Two rotations may be equivalent, 
without being conjugate (they may have non-equivalent 
rotation axes or different angles). In addition to (13), 
R~ is inversely equivalent to R 2 if it is equivalent to 
R2 ~ . If this is the case, then R~ acting on the first grain 
produces the same disorientation as R 2 acting on the 
second grain. A geometrical method to determine the 
number of equivalent and inversely equivalent rotations 
will be presented in §6. 

A second type of degeneracy of the value of the 
coincidence index occurs when rotations are related by 
a symmetry of the hyperlattice but not by a symmetry 
of the quasicrystal.~ This type of degeneracy has been 
discussed (Radulescu, 1994; Radulescu & Warrington, 
1995) and when it exists is always twofold (disorien- 
tations related by such a symmetry are marked with 
an asterisk in Table 1, for instance 2711 and S l l*) .  
Finally, a third type of degeneracy has no symmetry 

t The complete point symmetry group of the hypercubic lattice is X?(6). 
the hyperoctahedral group, which contains as a subgroup Yh the point 
symmetry group of the quasilattice. 

connotation (an example in Table 1 is given by the 
disorientations ~'311, 27312), which is also known in 
3D cubic crystals and arises from different diophantine 
solutions of equations (3). 

6. The disorientation tile 
and Frank-Rodrigues space 

One may define a rotation space in which any rotation 
R is represented by a vector parallel to the rotation 
axis with a length determined by the rotation angle. 
For icosahedral symmetry, this space may be divided 
into tetrahedral tiles, each tile containing rotations that 
are not symmetry related; the purpose is to reduce 
(by symmetry combinations SIRS 2 or SiR- IS2  ) an 
experimentally determined rotation R to a standard dis- 
orientation description. 

Frank (1988) discussed the utility of various repre- 
sentations of rotations as vectors in a 3D space and 
showed that the Rodrigues mapping, which associates 
a vector n tan(a;/2) in a 3D space [called hereafter 
Frank-Rodrigues (F-R) space] to a rotation of angle a; 
and axis n, has two useful properties. These are that 
planes and lines in the F-R space transform to planes and 
lines on pre- or post-rotations by any arbitrary rotation, 
and that the locus of all rotations, equally misoriented 
from two reference rotations, is a plane orthogonal to 
the difference vector between the reference rotations. 

The second property allowed Frank to divide F-R 
space into polyhedral cells, similar to the Voronoi de- 
composition of the direct space of a crystal lattice or 
to the Brillouin-zone decomposition of the reciprocal 
space. The cells are centred on symmetry rotation vec- 
tors. For the group Y, there are 60 such cells; that 
containing the origin of the F-R space is a pentagonal 
dodecahedron, containing the smallest angle descriptions 
(disorientations) of rotations, and called by Frank the 
fundamental zone. The highly symmetric vertices on the 
border of the fundamental zone are all low-coincidence 
Z' Q-ROT [maximum angles of 36 ° (~'5), 41.81 ° (~9)  
and 44.48 ° ($4) ,  on fivefold, twofold and threefold axes, 
respectively]. 

The fundamental zone may be subdivided into 120 
tetrahedral tiles, with vertices of Z1,  $ 4 ,  $ 5  and 
$9 .  This avoids two equivalent or inversely equivalent 
rotations within the same tile. The tile corresponding to 
the unit stereographic triangle is called the standard dis- 
orientation tile. The other cells may be correspondingly 
subdivided, see Fig. 3. 

One interest in this construction is to reduce a given 
rotation to one within the standard disorientation tile. 
Tables 1 and 2 facilitate this operation. For example, a 
Q-ROT of 63.43 ° about a twofold axis (no. [1] in Table 
2) is found in line 2 of Table 1 to be equivalent to a 36 ° 
standard disorientation about a fivefold axis (no. [2]). 

F-R construction also reveals some rules for the 
distribution of Q-ROTs in the space of all rotations. 
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Table 1. Q-ROT and sets of equivalent rotations with axes in the unit stereographic triangle (UST rotations)for 
S < 5 0  

Rotations are given by their 6D matrices, or are represented as (~:[[. ,#± )[d], where ~11 ~± are the rotation angles in the physical and 

S 

4 0 1 1 0 1 1 2 (44.48, 164.48)[3] 
1 0 1 - 1  - -1  0 
1 1 0 I 0 --1 
1 - - I  0 I 0 1 
1 0 - 1  --1 1 0 
0 i -1  0 --! 1 

5 5 0 0 0 0 0 5 (36.00, 108.00)[2] 
0 2 2 2 --3 2 
0 2 2 2 2 --3 
0 --3 2 2 2 2 
0 2 - 3  2 2 2 
0 2 2 --3 2 2 

9 1 0 2 0 2 0 3 (41.81, 138.19)[1] 
0 2 0 1 0 2 
2 0 1 0 --2 0 
0 1 0 2 0 --2 
0 --2 0 2 0 1 
2 0 - 2  0 ! 0 

11 11 0 0 0 0 0 11 (19.46, 171.23)[2] 
0 2 6 - 4  --1 8 
0 8 2 6 --4 -1  
0 - i  8 2 6 --4 
0 --4 -1  8 2 6 
0 6 - 4  - 1  8 2 

perpendicular space, respectively, and d is the rotation axis. 

R x F F Disorientation 

I 1 * 1 ! 0 0 0 0 0 i I (27.23, 9 i.46)[2] 
0 6 -1  2 - 4  8 
0 8 6 -1  2 - 4  
0 - 4  8 6 - 1  2 
0 2 - 4  8 6 -1  
0 - I  2 - 4  8 6 

16 2 - l  3 0 i 1 4 (1.04, 88.96)[3] 
3 2 -1  - !  - 1  0 

-1  3 2 1 0 - l  
1 - 1  0 3 - 2  - 1  
1 0 - 1  1 3 - 2  
0 1 -1  2 1 3 

19 2 3 14 4 10 6 19 (20.72, 146.10)[3] 
14 2 3 - 1 0  - 6  4 
3 14 2 6 - 4  - 1 0  
6 - 1 0  4 12 - 8  - 1  

10 - 4  - 6  1 12 - 8  
4 6 - 1 0  8 ! 12 

19" 8 12 -1  10 6 - 4  19 (26.10, 99.28)[3] 
- 1  8 12 - 6  4 10 
12 - !  8 - 4  - 1 0  - 6  

--4 --6 10 14 --3 2 
6 --10 4 --2 14 --3 

lO --4 --6 3 --2 14 

20 3 2 7 - 2  5 3 10 (26.57, 153.43)[1] 
- 2  7 2 3 - 5  3 

7 - 2  3 2 - 5  - 3  
2 3 - 2  7 5 - 3  
3 - 3  - 3  3 0 8 
5 5 - 5  - 5  0 0 

Equivalent UST rotations 

(44.48, 164.48)[3](75.52, 75.52)[3](90.00, 90.00)[11 
(110.21, 154.76)[8](138.59, 138.59)[11](154.76, 110.21)[7] 

( 164.48, 44.48)[3](180.00, 180.00)[4] 

(36.00, 108.00)[2](63.43, 116.57)[ 1 ](93.03, 161.30)[ 7] 
(108.00, 36.00)[2](! 16.57, 63.43)[1](129.66, 149.52)[ 12] 

(149.52, 129.66)[13](161.30, 93.03)[8](180.00, 180.00)[2] 
( 180.00, 180.00)[51 

(41.81, 138.19)[1](60.00, 60.00)[3]( 81.82, 167.34)[13] 
(99.59, 99.59)[11](109.47, 109.47)[4](124.31, 159.45)[22] 

(138.19, 41.81)[1](146.44, 146.44)[27](159.45, 124.31)[21] 
( 167.34, 81.82)[ 12](! 80.00, 180.00)[3](! 80.00, 180.00)[6] 

(19.46, 171.23)[2l(52.54, 44.77)[2](65.34, 126.81)18] 
(82.31, 132.79)[4](91.46, 27.23)[2](104.95, 165.78)[21] 
( 117.30, 87.16)[ 13]( 124.54, 99.23)[2]( 124.54, 99.23)[5] 

(135.77, 156.90)[36](135.77, 156.90)[39](153.09, 142.19)[41 ] 
(163.46, !16.77)[2](163.46, 116.77)[32](169.80, 63.98)[11] 

(180.00, 180.00)[10] 

(27.23, 91.46)[2](44.77, 52.54)[21(63.98, 169.80)111] 
(87.16, !!7.30)[12](99.23, 124.54)[2](99.23, 124.54)[5] 

(116.77, 163.46)[2](116.77, 163.46)[321(126.81, 65.34)[7] 
(132.79, 82.31)[4](142.19, 153.09)[40](156.90, 135.77)[371 
(156.90, 135.77)1381(165.78, 104.95)[22](171.23, 19.46)[2] 

( 180.00, 180.00)[9] 

(31.04, 88.96)[3](50.49, 139.58)[71(72.00, 144.00)[5] 
(82.82, 82.82)[ 11](88.96, 31.04)[3](98.24, 169.04)[37] 

(98.24, 169.04)[38](112.02, 112.02)[27](120.00, 120.(X))[6] 
(132.28, 162.22)[55](139.58, 50.49)[8](144.00, 72.00)[5] 

(151.04, 151.04)[3] (151.04, 151.04)[56](151.04, 151.04)[57] 
(162.22, 132.28)[54](169.04, 98.24)[36](169.04, 98.24)[39] 

(180.00, 180.00)[14] 

(20.72, 146.10)[3](56.75, 149.77)[4] 
(70.70, 101.48)112](78.21, 71.22)[8](89.24, 170.76)141] 
(99.28, 26.10)[3](105.12, 123.71)[40](114.12, 130.09)[9] 

(127.80, 165.02)[60](127.80, 165.02)[61](135.86, 80.50)[21] 
(140.72, 93.90)[3] (140.72, 93.90)[6](148.45, 155.64)[67] 

(160.65, 140.09)[62](160.65, 140.09)[63] (168.08, 112.95)[55] 
( 172.64, 53.34)[ 13]( 180.00, i 80.00)[ 16] 

(26.10, 99.28)[3](53.34, 172.64)[12] 
(71.22, 78.21)[7](80.50, 135.86)[22](93.90, 140.72)[3] 

(93.90, 140.72)[6](101.48, 70.70)[13](I 12.95, 168.08)[54] 
(123.71, 105.12)[41](130.09, 114.12)[10](140.09, 160.65)[64] 

(140.9, 160.65)[65](146.10, 20.72)[3](149.77, 56.75)[4] 
(155.64, 148.45)[66](165.02, 127.80)[58](165.02, 127.80)[59] 

(170.76, 89.24)[40](180.(X), 180.00)[15] 

(26.57, 153.43)[1]( 51.09, 112.22)[8](61.73, 88.49)[7] 
(76.12, 171.86)[27](88.49, 61.73)[ 8](95.48, 130.88)[ 36] 

(95.48, 130.88)[39]( 106.05, 136.35)[ 10]( 112.22, 51.09)[7] 
(121.76, 166.81)[58](121.76, 166.81)[59](130.88, 95.48)[37] 
( i 30.88, 95.48)[38](136.35, 106.05)[9](144.99, 158.58)[70] 
(144.99, 158.58)[71] (153.43, 26.57)[ 1](158.58, 144.99)[68] 

(158.58, 144.99)[69](166.81, 121.76)[60] (166.81, 121.76)[611 
(i 71.86, 76.12)[27](180.00, 180.00)[ 17](180.00, 180.00)] 18] 
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Table 1. (cont.) 

S 

25 

R x F  

0 2 2 3 2 2 
3 2 - 2  0 - 2  2 
2 0 4 - 2  --1 0 
2 1 0 2 0 - 4  
2 - 4  0 2 0 1 
2 0 --1 --2 4 0 

F Disorientat ion 

5 (37.40, 173.95)[8] 

Equivalent UST rotations 

(37.40, 173.95)[81(53.13, 53.13)1 I](60.96, 100.69)[ 13] 
(72.00, 144.00)[ 32](87.29, 147.91 )[ 9](95.74, 95.74){ 27] 

(100.69, 60.96)[12](108.34, 170.20)[62](108.34, 170.20)[63] 
( 120.00, 120.00)[56]( 120.00, 120.00)[57]( 126.87, 126.87)[ 11 
(126.87, 126.87)[14](137.58, 164.11)[73](144.00, 72.00)[32] 
(147.91, 87.29)[10] (154.16, 154.16)[741(154.16, 154.16)175] 

(164.11, 137.58)[72] (170.20, 108.34)[64](170.20, 108.34)[65] 
(173.95, 37.40)[71 (180.00, 180.00)[19](180.00, 180.00)[20] 

29 20 10 9 - 1 0  12 - 4  
- 1 0  24 10 5 - 6  2 

9 - 1 0  20 10 - 1 2  4 
10 5 - 1 0  24 6 - 2  

- 4  - 2  4 2 15 24 
12 6 - 1 2  - 6 - 1 6  15 

29 (34.34, 77.95)[1] (34.34, 77.95)[11(45.98, 112.62)[111 (60.42, 148.84)1211 
(78.76, 152.20)[10](88.46, 108.67)[401 (94.04, 82.98)[221 

(102.59, 171.49)[68](102.59. 171.49)[691 (110.65, 52.32)[ 12] 
(115.43, 128.48)[671(122.93, 134.25)[161 (127.43, 38.72)[8] 
(134.53, 166.20)[771(141.45, 90.63)[54] (145.66, 102.05)[11 

(145.66, 102.05)[141(152.36, 157.59)[84] (152.36, 157.59)[85} 
(163.02, 143.34)[801(163.02, 143.34)[831 (169.53, 118.83)[731 
(173.54, 69.16)[41] (180,00, 180.00)[23] (180.00, 180.00)[24] 

29* 16 - 6  12 12 - 6  15 
12 10 9 - 2 0  10 4 

- 6  24 10 10 - 5  - 2  
15 - 2  4 4 - 2  - 2 4  

- 6  - 5  10 10 24 - 2  
12 10 - 2 0  9 10 4 

29 (38.72, 127.43)[71 (38.72, 127.43)[71(52.32, 110.65)[131 (69.16, 173.54)[401 
(77.95, 34.34)[ 1 ](82.98, 94.04)[21 ] (90.63, 141.45)[55] 

(102.05, 145.66)[ 1](102.05, 145.66)[14] (108.67, 88.46)[41] 
(I 12.62, 45.98)[11](! 18.83, 169.53)[72] (128.48, 115.43)166] 

(134.25, 122.93)[15](143.34, 163.02)[811 (143.34, 163.02)[82] 
(148.84, 60.42)[22](152.20, 78.76)[9] (157.59, 152.36)[86] 

(157.59, 152.36)[87](166.20, 134.53)176] (171.49, 102.59)[70] 
(171.49, 102.59)[711(180.00, 180.00)[25] (180.00, 180.00)[26] 

31~ 31 0 0 0 0 0 
0 12 6 3 - 1 4  24 
0 24 12 6 3 - 1 4  
0 - 1 4  24 12 6 3 
0 3 - 1 4  24 12 6 
0 6 3 - 1 4  24 12 

31 ( 13.29, 120.36)[2] (13.29, 120.36)[2](58.71, 23.64)[2J 
(78.72, 116.98)[391(85.29, 95.64)12](109.62, 134.14)I711 

( 1 ! 7.95, 139.21 )[ 171(122.91, 64.50)[21 ]( ! 30.71, 167.64)[21 
(130.71, 167.64)[79](138.27, 101.85)[63](150.13, 159.93)[931 

(157.29, 48.36)[2}(168.70, 125.73)[77](173.02, 84.87)[56] 
(180.00, 180.00)[291 

317 31 0 0 0 0 0 
0 24 6 --14 12 3 
0 3 24 6 --14 12 
0 12 3 24 6 - 1 4  
0 - 1 4  12 3 24 6 
0 6 --14 12 3 24 

31 (23.64, 58.71)[21 (23.64, 58.71 )[21(48.36, 157.29)[21(64.50, 122.91 )[22] 
(84.87, 173.02)[57](95.64, 85.29)[2](101.85, 138.27)[64] 

( 116.98, 78.72)[37]( 120.36, 13.29)[21(I 25.73, 168.70)[761 
(134.14, 109.62)[68](139.21, 117.95)[17](155.13, 66.98)[6] 
(159.93, 150.13)[95](167.64, 130.71)[21(167.64, 130.71)[78] 

(180.00, 180.00)[281 

312 24 11 --4 12 2 --10 
--4 24 11 --2 10 12 
11 - 4  24 - 1 0  --12 --2 

--10 --2 12 26 --6 -1  
2 --12 10 I 26 --6 

12 --10 - 2  6 ! 26 

31 (35.13, 53.02)[3] (35.13, 53.02)[31(48.36, 157.29)[51(72.86, 104.26)I21 ] 
(84.87, 173.02)[3](84.87, 173.02)[56](95.64, 85.29)[32] 

(101.85. 138.27)[651(i11.36, 142.85)[151(116.98, 78.72)[381 
(134.14, 109.62)[69](139.21, 117.95)118](147.25, 161.67)[89] 

(147.25, 161.67)[91](152.14, 42.36)[12](155.13, 66.98)[3] 
(159.93, 150.13)[941(167.64, 130.71)[79](172.37, 95.13)[671 

(180.00, 180.00)130] 

313 4 10 11 12 - 2  24 
- 2  26 10 - 6  1 - 1 2  
24 - 2  4 10 - 1 2  -11 
10 - 6  12 - 1  26 - 2  
11 12 - 2 4  2 10 4 
12 - 1  2 - 2 6  - 6  10 

31 (42.36, 152.14)[13] (42.36, 152.14)II3](53.02, 35.13)131(66.98, 155.13)[3] 
(78.72, 116.98)[36](85.29, 95.64)1321(95.13, 172.37)[66] 

(104.26, 72.86)[22](109.62, 134.14)[70](117.95, 139.21)[18] 
(130.71, 167.64)178](138.27, 101.85)[62](142.85, 111.36)[16] 

(150.13, 159.93)[921(157.29, 48.36)[5](161.67, 147.25)[881 
(161.67, 147.25)[901(173.02, 84.87)[3](173.02, 84.87)[57] 

( 180.00, 180.00)[3 ! ] 

36t I 4 I 3 3 0 
I I 4 - -3  0 3 
4 1 I 0 --3 - 3  
0 --3 3 4 --I 1 
3 - 3  0 - i  4 - i  
3 0 - 3  1 --1 4 

6 (15.52, 135.52)[31 (15.52, 135.52)[31(60.31, 174.48)[39](70.53, 70.53)[41 
(76.24, 108.73)[38](84.79, 147.23)[60](104.48, 104.48)[3] 

(108.73, 76.24)[36](115.39, 171.06)[831(125.69, 125.69)[75] 
(131.81, 131.81)[19](131.81, 131.81)[20](135.52, 15.52)[3] 

(141.43, 165.51)[981(147.23, 84.79)[581(156.44, 156.44)[1021 
(165.51, 141.43)[1011(171.06, 115.39)[81](174.48, 60.31)[371 

(! 80.00, 180.00)[33] 
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Table 1. (cont.) 

S 

362 

411 

41~' 

412 

41~ 

44 

44* 

R x F  

4 1 --1 4 --1 1 
4 1 1 - 4  1 1 

--1 2 5 1 --1 2 
1 1 2 1 2 - -5  
1 - 5  2 1 2 1 

--1 2 -1  i 5 2 

41 0 0 0 0 0 41 
0 14 26 - 2 2  6 17 
0 17 14 26 --22 6 
0 6 17 14 26 --22 
0 --22 6 17 14 26 
0 26 --22 6 17 14 

41 0 0 0 0 0 41 
0 26 17 --22 14 6 
0 6 26 17 --22 14 
0 14 6 26 17 - 2 2  
0 - 2 2  14 6 26 17 
0 17 - 2 2  14 6 26 

30 - 4  11 4 --12 22 41 
4 35 --4 6 --18 --8 

II 4 30 --4 12 - 2 2  
- 4  6 4 35 18 8 
22 8 --22 --8 24 - 3  

- 1 2  18 12 - 1 8  13 24 

3 8 22 22 8 24 
22 4 !i - 3 0  4 12 

8 35 4 4 --6 --18 
24 - 1 8  12 12 - 1 8  -13  

8 - 6  4 4 35 --18 
22 4 --30 Ii 4 12 

10 3 2 II 
2 5 18 - I I  
3 13 5 II 

15 - 1 2  3 0 
--5 4 - !  0 
11 11 -11 -11 

- 5  15 22 
--1 3 

4 - 1 2  
9 --5 

19 9 
0 0 

13 II - 5  12 
12 0 3 - 5  

- 5  11 18 3 
II - l l  II 0 

--3 -11 2 15 
4 0 I - 9  

4 - 3  
- 9  15 

1 2 
0 - I !  
5 10 

19 5 

F Disorientation 

6 (39.00, 121.82111 i] 

(11.1 I, 128.87)[2] 

(15.13, 83.11112] 

(30.90, 71.78)[1] 

41 (36.92, 161.05)[4] 

(27.95, 175.551171 

22 (31.21, 157.431111] 

Equivalent UST rotations 

(39.00, 121.82)[111(48.19, 48.19)11](60.31, 174.48)[361 
(76.24, 108.7311371(84.79, 147.23)161](97.31, 150.771116] 

(104.48, 104.48)[56](104.48, 104.4811571(108.73, 76.24)[39] 
(115.39, 171.0611801(121.82, 39.00)[11](125.69, 125.691174] 
(131.81, 131.81111](141.43, 165.51)[96](141.43, 165.51)199] 
(147.23, 84.79)I59](150.77, 97.31)[151(156.44, 156.44111031 

(165.51, 141.431197](165.51, 141.4311100](171.06, 115.3911821 
(174.48, 60.31)[38](180.00, 180.00)I34](180.00, 180.00)[35] 

(11.11, 128.87112](60.89, 87.13112](67.67, 117.7311411 
(77.52, 151.00)[58](83.11, 15.13112](! 11.30, 172.06)I88] 

(118.22, 66.441136](122.38, 132.211184](128.93, 137.5211231 
(132.89, 56.871121(139.18, 167.1411105](149.10, 108.22)[201 
(155.11, 159.13112](170.56, 123.38)[96](174.17, 79.76)[661 

( 180.00, 180.00)143] 

(15.13, 83.11112](56.87, 132.89112](66.44, 118.221138] 
(79.76, 174.17)[67](87.13, 60.89)[2](108.22, 149.10)[ 19] 
(117.73, 67.671140](123.38, 170.561197](128.87, 11.111121 

(132.21, 122.38)[86](137.52, 128.93)[261(151.00, 77.52)[60] 
(159.13, 155.11)[2](167.14, 139.18)[ 106](172.06, I! 1.30)189] 

(180.00, 180.00)[42] 

(30.90, 71.78)[1](48.16, 175.10)[22](60.89, 87.13115] 
(77.52, 151.001159](91.55, 154.121117](91.55, 154.121118] 

(99.43, 114.16)[67](104.08, 91.44)[55](111.30, 172.061190] 
(! 18.22, 66.44)[39](122.38, 132.21)[85](128.93, 137.52)[241 
(132.89, 56.87)[32](139.18, 167.14)1104](145.34, 98.10)[72] 

(149.10, 108.22)[1](149.10, 108.221[19](155.11, 159.13)[1171 
(161.05, 36.92)[4](164.69, 145.91)[108](170.56, 123.38)[98] 
(170.56, 123.38)[99](180.00, 180.00)[81(180.00, 180.00)[44] 

(36.92, 161.05)[4](56.87, 132.89)132](66.44, 118.22)[37] 
(71.78, 30.90)[I](87.13, 60.89)[5](91.44, 104.08)[54] 

(98.10, 145.341173](108.22, 149.101[1](108.22, 149.101120] 
(114.16, 99.43)[66](123.38, 170.56)[100](123.38, 170.56)[101] 
(132.21, 122.38)[87](137.52, 128.93)[25](145.91, 164.69)[109] 

(151.00, 77.521161](154.12, 91.55)[17](154.12, 91.55)[18] 
(159.13, 155.11)[!16](167.14, 139.18)[107](172.06, il 1.30)[91] 

(175.10, 48.16)[21](180.00, 180.00)[7](180.00, 180.001145] 

(27.95, 175.55)[7](47.21, 97.69)[41(56.01, 123.99)[271 
(68.04, 153.72)[54](74.61, 51.611[11](78.44, 44.88117] 

(84.31, 156.53)[15](93.18, 120.85)[70](93.18, 120.85)[71] 
(98.34, 101.301160](98.34, 101.301161](106.30, 172.791194] 

( 106.30, 172.791195](113.86, 81.11)[55]( 118.37, 136.83)[92[ 
(118.37, 136.83)[931(125.46, 141.581129](125.46, 141.58)[31] 
(129.73, 74.00)[54](136.49, 168.33)[112](136.49, 168.33)[I 13] 
(136.49, 168.33111141(143.09, 106.941180](143.09, 106.94)[831 
(147.10, 115.66)[23](147.10, 115.66)[24](153.51, 161.06)[125] 

( 153.51, ! 6 i.06)[ 126]( 157.43, 31.2 i )[ 11 ]( 159.84, 61.04)[ 10] 
( 163.72, 149.12)[ 121 ]( 163.72, 149.12)[ 122]( 163.72, 149.12)[ 123] 

( 169.96, 128.971[ 104]( 169.96, 128.97)[ 105]( 173.80, 91.64)[74] 
( 173.80, 9 i.641175 ]( 180.00, 180.00)[47] 

(31.21, 157.43)[11](44.88, 78.44)[8](51.61, 74.61)[!11 
(61.04, 159.84)[9](74.00. 129.7311551(81.11, 113.861154] 
(91.64, 173.801174 ](91.64, 173.801175](97.69, 47.21 )[4] 

(101.3(I, 98.34)[581( 101.30, 98.34)[59]( 106.94, 143.09)[81] 
(106.94, 143.091182](ii5.66, 147.10)[25](115.66, 147.101126] 

( 120.85, 93.18)[68]( 120.85, 93.181169]( 123.99, 56.011127l 
(128.97, 169.96)[106](128.97, 169.96)[107](136.83, 118.37)[94] 

(136.83, 118.37)195](141.58, 125.46)[28](141.58, 125.461130] 
(149.12, 163.72)[118](149.12, 163.72)[119](149.12, 163.72)[ 120] 

( 153.72, 68.04)[ 55 ]( 156.53, 84.31 )[ 16]( 161.06, 153.51 )[ 124] 
(161.06, 153.5111127](168.33, 136.4911110](168.33, 136.49)[111] 

(168.33, 136.49)[115](172.79, 1(16.30)[92](172.79, 106.30)[93] 
(I 75.55, 27.951[ 8 ](180.(X), 180.001146] 
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Table 1. (cont.) 

R x F F Disorientation 

45 8 - 2  7 2 - 2  10 15 (21.62, 105.25)[1] 
2 12 -2  3 -8  0 
7 2 8 - 2  2 -10 

-2  3 2 12 8 0 
10 0 -10 0 5 0 

-2  8 2 -8  8 5 

45" 8 2 8 -5  8 2 15 (37.68, 128.66)[12] 
8 2 3 0 - 1 2  2 
2 8 2 10 2 -7  
2 -7  2 10 2 8 
8 2 - 1 2  0 3 2 

--5 10 0 0 0 I0 

491 2 0 5 0 2 4 7 (16.60, 163.40)[1] 
0 5 0 2 -4  2 
5 0 2 0 -2  - 4  
0 2 0 5 4 - 2  
4 -2  - 4  2 0 3 
2 4 -2  - 4  3 0 

492 6 -2  3 0 0 0 7 (38.21, 38.21)[31 
3 6 -2  0 0 0 

--2 3 6 0 0 0 
0 0 0 6 -3  -2  
0 0 0 2 6 -3  
0 0 0 3 2 6 

Equivalent UST rotations 

(21.62, 105.25)[1](54.64, 155.79)[38](63.00, 67.70)[12] 
(74.75, 158.38)[14](85.10, 125.83)[65](91.01, 108.41)[58] 

(99.98, 173.35)[86](108.41, 91.01)[61](113.39, 140.32)[91] 
(121.17, 144.66)[28](125.83, 85.10)[63](128.66, 37.68)[13] 

(133.18, 169.24)[111](133.18, 169.24)[115](140.32, 113.39)[88] 
(144.66, 121.17)[31 ](155.79, 54.64)[39](158.38, 74.75)[ 1 ] 

(162.54, 151.57)[128](162.54, 151.57)[129](169.24, 133.18)[113] 
( 173.35, 99.98)[85 ]( 180.00, 180.00)[48 ]( 180.00, 180.00)[49] 

(37.68, 128.66)[ 121(54.64, 155.79)[371(67.70, 63.00)[ 13] 
(74.75, 158.38)[1](85.10, 125.83)[64](91.01,108.41)[59] 
(99.98, 173.35)[87](105.25, 21.62)[1](108.41, 91.01)[601 

(113.39, 140.32)[89](121.17, 144.66)[30](125.83, 85.10)[62] 
(133.18, 169.24)[110](140.32, 113.39)[90](144.66, 121.17)[29] 
(151.57, 162.54)[130](151.57, 162.54)[131](155.79, 54.64)[36] 
(158.38, 74.75)[14](169.24, 133.18)[I 12](169.24, 133.18)[1141 

( 173.35, 99.98)[84]( 180.00, 180.00)[50]( 180.00, 180.00)[51 ] 

( 16.60, 163.40)[ 1 ](58.45, 126.49)[41 ](64.62, 64.62)[4] 
(73.64, 174.89)[70](81.79, 81.79)[6](86.50, i14.72)[63] 

(104.60, 152.98)[23](110.92, 110.92)[75](114.72, 86.50)[64] 
(120.69, 171.72)[108](126.49, 58.45)[40](130.01,130.01)[102] 
(130.01,130.01)[103](135.58, 135.58)[34](135.58, 135.58)[351 
(144.39, 166.59)[133](152.98, 104.60)[26](158.21,158.21)[63] 
(163.40, 16.60)[1](166.59, 144.39)[1321(171.72, 120.69)[109] 
( 174.89, 73.64)[69]( 180.00, 180.00)[ 11 ]( 180.00, 180.00)[52] 

(38.21, 38.21 )[3](46.92, 138.98)[2 ! ](73.64, i 74.89)I71 ] 
(81.79, 81.79)[3](86.50, 114.72)[62](93.73, 149.72)[771 

(104.60, 152.98)[24](110.92, 110.92)[74](I 14.72, 86.50)[65] 
(135.58, 135.58)[33](138.98, 46.92)[22](144.39, 166.59)[1351 
(149.72, 93.73)[76](152.98, 104.60)[25](158.21,158.21)[3] 

( 158.21, 158.21 )[ 136]( 166.59, 144.39)[ 134]( 174.89, 73.64)[68] 
(180.00, 180.00)I53] 

Q-ROTs lie along straight lines and planes (and at 
all the intersections of these straight lines and planes) 
in F - R  space. A group of rotation tiles, lying within 
the unit stereographic triangle, with rotation angles up 
to 75 ° , is shown in Fig. 4. The planes and the lines 

f 

Fig. 3. Perspective of pentagonal dodecahedron showing a standard 
disorientation tile defined by Q-ROT with S -- I, 4. 5, 9. 

represented in Fig. 4 are planes and lines passing through 
the three represented S 1 vertices and other E 1 vertices 
(not included in Fig. 4). $ 4 ,  $ 5  and 279 vertices 
can be found at the intersections of the above planes 
and lines. This suggests (although we do not possess 
a complete proof) that starting with the posit ions of 
2?1 vertices one can iteratively derive the positions of  
all other Q-ROTs in the F - R  space. At each step of 
the iteration, new planes are drawn, passing through 
any three non-coll inear available Q-ROT vertices. New 
vertices, arising as intersections of at least three such 
planes, are added to the set of Q-ROT vertices that are 
available at the next step. Let us also mention that all 
Q-ROTs with ~'  < 50 can be found on the faces of the 
rotation tiles, as shown in Fig. 5. 

A similar line structure exists for twin rotations (ro- 
tations through 180 ° ) lying on the surface of the infinite 
radius sphere in the F - R  space. To show this, let us 
represent rotations by vectors wn, thus mapping 180 ° 
rotations onto the surface of a finite radius sphere, and 
form a gnomonic  projection of this surface. Great circles 
are transformed to straight lines and each face of a 
rotation tile is represented as a triangle in this projection, 
which therefore contains every value of Y? < 50. A 
part of  this triangle tiling is shown in Fig. 6. The only 
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Table 2. Axis identification for Table 1 

The S value holds for the 180 ° rotation around the quoted axis. The density (number of vertex points/unit length) of the axis scales asl/~'? 2. 
Positions of some of these axes are shown in Fig. 6. 

No. Indices Indices 

[11 
[2] 
[31 
141 
151 
[61 
[71 
[81 
[91 

1101 
[111 
[121 
[131 
[141 
1151 
[16] 
[171 
[181 
1191 
[201 
1211 
[22] 
[23] 
[24] 
[25] 
[26] 
[271 
[28] 
[291 
[3o1 
[311 
[321 
[331 
[34] 
[351 
[36] 
137] 
[38] 
[391 
1401 
[411 
.[42] 
[43] 
[441 
[451 
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points of the F-R space not represented belong to the 
interiors of the rotation tiles, therefore any disorientation 
not having a twin representation* lies within the rotation 
tile and has a value of ~ > 50. 

6.1. Multiplicity N~ of equivalent rotations 
Although the rotation tiles vary in shape and size, 

according to their relative orientation and displacement 

* We say that a disorientation has a twin representation if it can be 
obtained by a mirror reflection in a twin plane, or equivalently by a 
180 ° rotation about a twin axis orthogonal to the twin plane (we do 
not discuss here the complications of non-centrosymmetric structures). 

with respect to the standard disorientation tile, the great 
advantage of the F-R space is that it is easy to vi- 
sualize the packing of the tetrahedra and to build a 
corresponding 3D model. 

When the point representing a vector in the F-R 
space within or on the boundary of the rotation tile is 
known, it is easy to determine visually the multiplicity 
number N~  of distinct rotations that are either equivalent 
or inversely equivalent (therefore represent the same 
disorientation of the two grains) to a given disorientation 
and the numbers are presented in Table 3. This follows 
from the connectivity of the tiles. First, the number N r 
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of tiles is found sharing a common ~' vertex in the 
rotation space. Fig. 4 clearly shows that for example 
a rotation corresponding to X' = 5 is shared between 20 
neighbouring tiles. There are 60 rotation tiles within the 
solid angle of one unit (standard) stereographic triangle 
and 120 such triangles in the 47r solid angle, whence 
N z = 120 x 60/N T. 

The computation of the multiplicity/~s sT of all equiv- 
alent F-R vectors inside or on the boundary of the 
unit stereographic triangle (UST) is more involved but 
similar (Table 3). Any rotation, equivalent to a given 

Table 3. Dependence of  the multiplicities N~: and N L  UST 
on the position in the standard disorientation tile 

Position in tile N T NE/60 N UST S values 

Vertex ,_,w 1 120 1 8 I 
$ 4  24 5 8 4 
$ 5  20 6 10 5 
$ 9  12 10 12 9 
Edge S I - $ 5  10 12 16 11, 11", 31~, .31~', 411 , 41~ 
S 1 - $ 4 ,  $ 4 - $ 9  6 20 19 16, 19, 19", 312, 31~, 36 l, 

492 
Wl ~9 v- w ~ 4 - ~ 5 ,  4 30 24 20, 25, 29, 29* 362, 412, 

~ 5 - ~ 9  41~, 45, 45", 49 l 
Any face 2 60 38 44, 44" 

1 

o 

/+ 

/IV.. 12 

~ ~ dodec .h ,  edge  

1 o r i g i n  

Fig. 4. Perspective of rotation tiles showing connectivity and sequence 
of vertices ~ = 1, 4, 5, 9. 

5 25 36, 9 29 41, 20 1.5 Z. 9. 1 
• - , , , , , i , 

? -  ~ . 

29 ' 1.5 

~-,.. . .  .-+ t1.1, 
~ 1 ~9 

" 3 6., 9 

Fig. 5. Surface of standard disorientation tile opened out and plotted as 
its equivalent surface at 180 ° with positions of Q-ROT for S < 50. 

Table 4. Proportion of  random rotations close to 
rotations according to the ~--I/2 criterion 

Cubic Icosahedral 
Proportion Proportion 

Nv~ xlO -2 ~ N~. xlO -2 

1 24 1.98 1 60 4.95 
3 96 1.53 4 300 3.10 
5 144 1.07 5 360 2.68 
7 192 0.86 9 600 1.83 
9 288 0.88 11 720 1.70 

11 288 0.668 11" 720 1.70 
Total 6.98 x 10 -2  Total 15.96 x 10 -2  

disorientation, is conjugate to one of the above /~s sa 
rotations. For this reason, we decided to include in 
column 5 of Table 1 only these Afs sT rotations and not 
the complete set of N~: symmetry-related rotations. 

6.2. CSL order in a boundary of random rotation 

The presence of CSL order or DSC Burgers vectors 
in a grain boundary will affect the ease of diffusion, 
boundary migration and nucleation of second phases 

2 20 34 6 24 8 18 49 11 

' ' 1 ' '  ' . . . .  , 

/ 3o i~ ~ a3z' 

+°--...f 

35 3 

Fig. 6. Gnomonic projection of the 180 ° sphere (containing all 180 ° 
rotations) showing the positions of those axes from Table 2 generat- 
ing twins with ~ < 50. Lines and triangles are equivalent to edges 
and faces of the standard disorientation tile, respectively. Certain 
values are common for two non-equivalent axes (two non-equivalent 
points on the sphere) that provide two twin descriptions (e.g. ~5, 
~ 9  but not ~ 4 ) .  
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Table 5. DSC and CSL bases for  a f ew important cases in a reduced form, that is of  basis vectors chosen to be 
of  minimum length in 6D, together with corresponding disorientation angle 

Rotation CSL basis vectors DSC basis vectors Rotation CSL basis vectors DSC basis vectors 

36 ° 121 S 1 0 0 0 0 0 5 0 0 0 0 0 44.48 ° 13] $ 4  1 0 0 0 0 0 1 1 1 1 1 T 
0 1 1 0 0 0 0 I 4 1 1 1 1 0 I T O () 0 0 1 T  O O 
0 1 T I  o 0  ~5~ 0 1 1 4 1 I 1 0 o 0  1 T  ~t T 1 o 0 1  1 
0 1 0 o T 1 o 1 1 I 4 1 0 1 0 0 I 1 ~ T 1 0 0 1 1 
o I o o T  1 o 1 1  l 1 4 O T  1 1 o o  o o  1 1 o o  
0 1 O O O l  o 1 1 I I 1 o I o o o o  1 T  1 1 I 1 

19.46 ° [2] S I I  1 0 0 0 0 0 11 0 0 0 0 0 41.81 ° [1] ~ 9  1 0 0 0 1 1 ]- 0 2 1 0 0 
0 1 1 0 0 T 0 5 4 1 3 2 0 1 1 T 0 0 0 T 0 0 2 1 

1 0 1 1 1 0 0  ~ 0 2 5 4 1 3  1 0 0 0 1 0  ~ 1 0 1 2 0 0  
0 1  T 1 1 0  0 3 2 5 4 1  0 1 0 1 0 0  0 1 0 0 1 2  
0 1 0 1 1 1  0 1 3 2 5 4  0 0 1 1 0 0  0 1 0 0 1 1  
0 1 0 0 1 1  0 4 1 3 2 5  0 0 0 0 1 1  1 0 1  T o o  

and will lower the energy of the boundary from that 
of a random structure. Given a set of boundaries of 
rotation axis and angle chosen with random probability, 
what proportion will retain order characteristic of a 
CSL rotation? This calculation for cubic boundaries 
(Warrington & Boon, 1975) was based on the assumption 
that the rotation would need to lie within an angular 
deviation v proportional to ~,-~/2 and that the number 
within a deviation v from a given rotation varies as 
N s ( v  - sin v)/Tr ~_ Nsv3/67r for small v. Table 4 com- 
pares the proportions expected for cubic and icosahedral 
boundaries and it is seen that for the lower Z' values the 
higher symmetry of the icosahedral phase approximately 
doubles the proportion of boundaries on the assumption 
that similar criteria apply. The presence of any texture 
that destroys a random distribution of rotations may be 
expected to increase the above proportions significantly. 

7. CSL geometry, dense planes of coincident vertices 

The 6D CSL can be derived from the 6D R matrix via the 
O-lattice theory (Bollmann, 1970) or by defining a basis 
matrix with determinant equal to S (see Warrington, 
1993; Warrington & Liick, 1995). The basis matrix is 
traditionally expressed in reduced form with six column 
vectors being as nearly orthogonal as possible consistent 
with being of minimum length. The reduced bases for 
several low-order S s  are given in Table 5. 

The coincident vertices are often not uniformly dis- 
tributed over the 6D CSL but frequently occur as widely 
spaced planes with a dense packing of points within 
them. We conjecture that when there is a twin plane then 
this is the densest plane in the CSL.* All the vertices 
in the physical twin plane project from a 4D sublattice 
L 4 of the hyperlattice and one defines the vertex density 
P4 of the latter as the inverse of the volume Y24 of its 

* In certain cases there are two twin planes, but the one orthogonal to 
an even twin axis is always more dense [see Radulescu (1994, 1995) 
and Appendix A]. 

unit cell: 

P4 = 1/(-24" (14) 

The physical twin axis, orthogonal to the physical 
twin plane, contains vertices that project from a 2D 
sublattice L 2 of unit-cell surface Y22 (see Table 2). The 
subspaces that embed L 4 and L 2 are orthogonal and, for 
a primitive hypercubic lattice of lattice constant a, 

"Q4 = a 2 ~ 2  • ( 1 5 )  

The vertex density of L 2 is 

t9 2 - -  1 / . (2  2. ( 1 6 )  

For twin representable disorientations and odd twin 
axes (odd sum of indices, see Appendix A), a basis of 
the CSL can be obtained by adding to the basis vectors 
of L 4 the basis vectors of L 2, therefore CSL -- L 2 ® L z. 
Centrings are necessary if the twin axis is even (even 
sum of indices). Therefore, the CSL preserves complete 
4D sublattices of the 6D hyperlattice in the family 
parallel to L 4. L' is then the 'preservation index', one 
in .E of such 4D sublattices of the hyperlattice belongs 
to the CSL. When the CSL has no twin description, 
the preserved 4D sublattices must be replaced with 2D 
sublattices (parallel to the sublattice L 2, corresponding 
to the rotation axis). 

All this is valid also for CSL in a 3D lattice E. The 
presence of a twin plane implies that the CSL is made 
of complete 2D lattice planes of E, parallel to the twin 
plane. In general, the CSL is composed of complete 
1D rows of E, parallel to the rotation axis. For twin 
representable disorientations, both descriptions (in terms 
of preserved lattice planes and rows) are valid. 

Because CSL lattices are special types of derivative 
lattice, this may be connected to Harker's classification 
(Harker, 1978; Rolley-Le Coz, Senechal & Billiet, 1983) 
of derivative lattices. CSLs with twin planes correspond 
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to the third case of this classification, when complete 
planes of the basic lattice are preserved in the derivative 
lattice and CSLs with no twin planes correspond to 
the second case when only rows and no complete 
planes are preserved. There are always sublattices of 
the hyperlattice that are entirely included in the CSL, 
so that derivative, lattices of the first kind in Harker's 
classification cannot be a CSL. 

The above geometry of the CSL is reproduced in 
the CQL. The coincidence quasilattice frequently shows 
families of parallel planes of high density of coincident 
vertices. The planar density of coincidences (number 
of coincident vertices/unit surface) in the planes of 
such a family varies from zero to a maximum value 
(proportional to/9 4 if the planes of the family are parallel 
to the twin plane). For some very dense twin planes, 
there are thin bands of coincidences, which are parallel 
to the twin plane and are separated by large intervals 
containing no coincidence. This is the case of I:5 and 
$9  [for which J?2 and consequently J'24 are small, see 
(14), (15), (16)], as can be seen from the distribution 
of coincidence points in the Wieringa roofs in Figs. 
2(c) and (d). For $4, the coincident vertices are more 
homogeneously distributed in space, with no empty large 
intervals between vertex planes as seen in Fig. 2(b). The 
twofold axis has been chosen for Fig. 2 since it displays 
the homogeneity or the non-homogeneity more clearly 
than other roof orientations. 

8. The DSC lattice, atomic rearrangements 
and grain boundary displacements 

The DSC lattice is defined as the set of all the shift 
vectors that maintain the CSL (with displaced origin) and 
for simple hypercubic lattices is conveniently derived 
(Grimmer, Bollmannn & Warrington, 1974) via the 
equation 

CSL r DSC -- 1, (17) 

where CSL T is the transpose of the matrix of basis 
column vectors for the CSL and DSC is the matrix of 
basis column DSC vectors. 

Again, the reduced form of a basis for the DSC of 
several low-order 27s is given in Table 5. The corre- 
sponding shifts in physical space can be derived using 
(10) or the upper 3 x 6 part of the matrix A (equation 8). 

The effect of a displacement of one icosahedral qua- 
sicrystal with respect to a second can be displayed by 
performing sideways shifts on well chosen Wieringa 
roofs. Provided the displacement corresponds to a vector 
in the 6D DSC lattice, the density of coincidences will 
remain the same in 6D. The density of coincidences in 
Wieringa roofs may decrease since these roofs have no 
periodic repeat. A fall in the density of coincidences 

may be restored in two ways. The first arises because 
the roof omits points in its neighbourhood as a result 
of its corrugation. The points may be revealed by a 
'roof switching', i.e. replacing the concave (convex) 
assemblage of three lozenge faces having a common 
vertex with the convex (concave) assemblage opposite to 
it on the same rhombohedron and thus making the roof 
pass through another vertex of the 3D tiling. The second 
arises through a 'vertex flip', which moves a vertex to 
a new position not within the original tiling. This is 
referred to in the literature as a Bilinski or phason 'flip' 
(see Coxeter, 1973; LUck, 1988). The number of vertex 
flips necessary to restore coincidences can be estimated 
by using the perpendicular space. This number grows 
with the difference in size between the domains .,4 and D 
(see §4) and therefore with the perpendicular component 
of the DSC shift (Radulescu & Warrington, 1995). 

While 'switching' does not change the tiling, 'flip- 
ping' brings in new positions of vertices and produces 
loops of a special kind of linear topological defects 
[phasons (Ltick, 1988)]. In a Wieringa roof chosen as 
close as possible to the interface such that it tests 
the coincidences in a neighbourhood of the interface, 
roof switching is the elementary deformation that leads 
to steps in the interface in order to look for high- 
density planes of the CQL. Thus, displacement of one 
quasicrystal with respect to the other by a DSC vector 
will generally shift the dense rows of coincident vertices 
in Figs. 2(c) and (d), forming a step in a low-energy twin 
interface containing more coincidences (the roof to be 
switched in this case is orthogonal to the page and par- 
allel to the dense rows). Similarly, flipping corresponds 
to introducing phason defects in the neighbourhood of 
the interface. The energetic cost of these defects may 
be compensated by the increase in coherence of the 
interface. 

DSC vectors are candidates for Burger's vectors of 
grain boundary dislocations, which accommodate devi- 
ations from CSL disorientations. As the physical and 
perpendicular component of the Burger's vector pro- 
duces elastic strain and atomic rearrangements (phason 
strains), respectively, the choice of a particular Burger's 
vector will depend on the relative energy required to 
produce physical and phason strains. For the time be- 
ing, we must appeal to experiment. Recent results for 
lattice dislocations (Wollgarten, Rosenfeld, Feuerbacher, 
Metzmacher & Urban, 1995) indicate that a balance is 
required with phason strain being favoured over physical 
strain. 

To summarize, a grain boundary may seek a minimum 
of energy by relaxing via a series of DSC dislocations 
minimizing their total free energy by a balance of 
entropy, phason and physical strain. The boundary plane 
may also deviate and seek out dense planes of coincident 
points via roof switching and finally by a flipping of 
vertices an increase in coherence may be obtained at the 
boundary (Radulescu, Warrington & LUck, 1997). 
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9. Conclusions 

We have shown how the concept of coincidence between 
rotated crystals may be extended to quasicrystals and 
to the icosahedral structure in particular. The route to 
determining the coincidences has been demonstrated and 
data concerning the corresponding CSL's in hyperspace 
tabulated for the more important values of S < 50. 

We have demonstrated how all possible relative rota- 
tions for quasicrystals of icosahedral symmetry may be 
reduced to presentation within a standard rotation tile 
and have defined the boundaries of that tile in terms 
of 27 values. The topology and interconnectivity of the 
rotation tiles allows a geometric determination of the 
multiplicity of symmetry-equivalent CSL rotations and 
proves that only the surfaces of the tiles are represented 
also by 180 ° rotations (quasirational rotations with 27 < 
50 are on the surfaces of the tiles and have at least one 
twin representation). The determination of multiplicity 
values allows the expected number of CSL relaxed 
boundaries to be calculated for a random distribution 
of rotations; the result is that approximately twice the 
number of such boundaries would exist compared with 
a random distribution of cubic 3D crystal boundaries. 

The density of coincidence sites per unit area of 
interface and per unit volume of the icosahedral structure 
are significant and compare with corresponding values 
for cubic crystals. Different 27 values show different dis- 
tributions of coincident vertices; diagrams demonstrate 
that the twin plane of 274 has a lower density than those 
for 275 and Z'9 and may explain why it has not been 
observed. The uneven distribution of coincidences for 
Z'5 and 279 may lead to faceted 275 and Z'9 interfaces 
for grain boundaries deviating from the exact twin plane. 
This is also typical for a variety of 27 values in cubic 
crystals. 

The coincidence quasilattice (the equivalent of the 
CSL in cubic crystals) is obtained by cut and projection 
from the 6D CSL, and therefore is not a complete 
lattice but itself a quasilattice. It may only be ap- 
proximately maintained by phason changes resulting 
from relative displacements of the two quasicrystals. 
It has been shown for eightfold planar quasicrystals 
(Radulescu & Warrington, 1996) that the coincidences 
lost by DSC shifts can be recovered by rearrangements 
of the structure with no local density change (phason 
flips). Furthermore, we can show that, under favourable 
circumstances, an increased grain-boundary coherence 
may occur beyond that expected from analogy with 
simple cubic crystals. We shall report in another paper 
(Radulescu, Warrington, & LOck, 1997) how similar 
mechanisms may be responsible for grain-boundary re- 
laxation in icosahedral quasicrystals. 
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APPENDIX A 
Quasicrystalline directions as twin axes 

II in the icosahedral qua- The directions of the form ~ zie i 
sicrystal [modulus or quasicrystalline directions (Katz 
& Duneau, 1986; Radulescu, 1994, 1995; Radulescu & 
Warrington, 1995)] always contain two incommensurate 
(irrational length ratio) vectors. The corresponding 6D 
vectors span a 2D sublattice L 2. There are two types 
of directions: even directions, for which L 2 contains 
only vectors with even sum of indices ~]7=z zi, and odd 
directions, for which L 2 contains also vectors with odd 
sum of indices. We showed (Radulescu, 1995) that for 
180 ° rotations S = Y22/p, where Y22 is the surface of 
the unit cell of L 2 (see Table 2) and p = 1 or p = 4 for 
odd or even rotation axes, respectively. As ~f22 is always 
of the form 5x 2 - y2, x, y E Z, the coincidence ratios are 
also of this form. 

The fact that indices of a vector on a quasicrystalline 
direction belong to a 2D lattice introduces some arbitrari- 
ness of the indices of a quasicrystalline direction. For 
instance, a twofold symmetry axis of the icosahedron 
may be indexed with any integer combination of e.g. 
[101000] and [010100] as may be seen by examining 
its position with respect to the fivefold axes on the 
stereographic projection (Fig. 1). For a unique choice, 
it is necessary in general to impose three conditions; 
for example, we choose successively: (i) a minimum 
value of the product IrU I x Ir±l, i.e. a minimum value 
of the form 5(r • r) 2 - (r • Sr) 2 [equation (10)]; (ii) 
a minimum length in 6D, i.e. minimum r • r; (iii) a 
minimum length of the physical component Irll I, i.e. 
minimum r • Sr. Thus, the above twofold axis will 
index as [010100]. After this choice, the parity of the 
axis is always the parity of the sum of the indices. 
An unfortunate inevitable consequence of the choice of 
minimum Irll I means that the usual 'zone-law' addition 
of indices is of very limited applicability but this may 
be only partially restored by using vector descriptions 
of non minimum length. 

The information on L 2 is not lost when consider- 
ing only one set of indices instead of two sets. One 
can always recover the second vector in a basis of 
L 2 by applying to the first set of indices the matrix 
S (if the axis is odd) or (1 + S) /2  (if the axis is 
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even). For instance, [101000] -- (1 + S) /2[010100] ,  
thus {[010100], [101000]} is a basis of the lattice L 2 
corresponding to a twofold axis in the icosahedron. 
Along the same lines, orthogonali ty of  axes rl I and r~ 
can be expressed as r I • r 2 = 0 and r I • Sr  2 = 0. 
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